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Abstract

The most popular type of devices used to track a
user’s posture in a virtual reality experience consists of
a head-mounted display and two controllers held in both
hands. However, due to the limited number of tracking
sensors (three in total), faithfully recovering the user in
full-body is challenging, limiting the potential for inter-
actions among simulated user avatars within the virtual
world. Therefore, recent studies have attempted to re-
construct full-body poses using neural networks that uti-
lize previously learned human poses or accept a series of
past poses over a short period. In this paper, we propose
a method that utilizes information from a neural motion
prior to improve the accuracy of reconstructed user’s
motions. Our approach aims to reconstruct user’s full-
body poses by predicting the latent representation of the
user’s overall motion from limited input signals and in-
tegrating this information with tracking sensor inputs.
This is based on the premise that the ultimate goal of
pose reconstruction is to reconstruct the motion, which
is a series of poses. Our results show that this integra-
tion enables more accurate reconstruction of the user’s
full-body motion, particularly enhancing the robustness
of lower body motion reconstruction from impoverished
signals. Web: https://https://mjsh34.github.io/
mp-sspe/.

1. Introduction
The technology of today’s Mixed Reality (MR) has

extended traditional interpersonal experiences into the
virtual realm, from social gatherings and gaming, to
collaborative work, just to name a few. While these
experiences have traditionally been limited to settings
in which all participants are present in the same envi-
ronment, MR systems instead rely on virtual avatars
to simulate the experience and benefits of non-verbal
communication. Unfortunately, real-time data streams

Figure 1. We present a method that utilizes a motion prior
to encode the overall motion of a user for full-body pose
reconstruction, using only the information of head and two
hands.

provided by commercial MR devices, which typically
consist of a head-mounted display (HMD) and two
hand-held controllers, each tracked in a small room-
scale grid, are insufficient to accurately reproduce the
full pose of its user, often resulting in MR environments
where avatars only show head and hands. Studies have
shown that a hand-only avatar provide little sense of
embodiment [63, 26, 11], whereas a full-body avatar can
significantly enhance the user experience by creating
better sense of embodiment and presence [26, 11, 16].

Tasked with the challenge of recovering full-body
posture of humans from sparse signal streams, previ-
ous works have attempted to reconstruct the human
body from tracking signals from four or more joints
including the pelvis [21, 62, 31, 66, 68, 69], and from
ego-centric cameras [23, 71, 42, 72], which are unavail-
able on most MR devices at the present day. Recent
works have attempted to reconstruct full-body poses
from pose information alone from the HMD and hand-
held controllers [1, 9, 3, 24, 46, 65, 67]. However when
the the reconstructed poses are combined to form a
complete motion, they often lead to unnatural motions
that fail to match the user’s desired action. These sys-
tems also often fail to faithfully reproduce lower body
motion beyond basic actions such as standing still, and
walking at various speeds.

We propose a method effectively utilizing a task-



generic neural motion prior [29, 15, 49, 55] (Section 2.4)
aimed at solving the issues mentioned above. We ex-
ploit a generative motion prior model with an encoder-
decoder architecture that is initially trained to recon-
struct full-body motion while learning a latent space
of human motions. We train a motion encoder to pre-
dict latent representations of motion from a sequence of
sparse poses obtained from the three sources mentioned
earlier, utilizing latent space learned by motion prior.
Finally, we train a sequence (time-series) model that
generates full-body pose from the sparse pose sequence
and the latent representations of the overall motion.
We achieve the following:

• Our method utilizing a motion prior outperforms
state-of-the-art methods in reconstructing a full-
body pose at a single frame, and in reconstructing
motions from combined full-body pose reconstruc-
tions from three tracking signals. We evaluate
static pose reconstruction and full motion recon-
struction performances using appropriate metrics.

• We show that our method produces natural-
looking motions which match the intended action
of the underlying full-body motion.

• Our method improves on reconstructing lower
body motions which methods without any prior
on motion struggle at.

We show our model’s superior performance against
previous works using a diverse set of quantitative met-
rics (Table 1), user studies (Tables 2 and 3, and Figure
4), and qualitative evaluation (Figure 5).

2. Related Works
2.1. Human Body Representations

The SMPL model [32] represents the human body
as a kinematic tree consisting of 24 joints using two
parameters: θ and β, where θ ∈ R24×3 represents the
rotations of all 24 joints in the axis-angle representa-
tion, and β ∈ R10 represents the shape parameter that
describes the body type derived via principle compo-
nent analysis [32] for each gender (male, female, and
neutral). We parametrize the full-body pose using the
joint rotations in 6D form, which is a continuous rep-
resentation of 3D rotation proposed by Yi et al. [76] to
be effective in training neural networks (also used by
previous works on the same task [9, 3, 24]). For train-
ing and inference, we use the neutral body with mean
body shape: β = 0, disregarding variations in body
shape, similar to the approach taken in previous works
[9, 3, 24] which also do not consider body shape diver-
sity.

2.2. Full-Body Reconstruction from Various Signal
Streams

An abundance of literature is dedicated to the re-
covery of full-body pose from observations of vari-
ous modalities such as images [4, 43, 73, 74], videos
[39, 53, 70, 7, 22], and sparsely-worn body trackers
[62, 21, 69, 66, 68]. Notably, the last set of research,
while similar to our problem setting, work with richer
information by the tracking the pelvis at the very least
and often the lower body as well [62, 21, 69, 68].

2.3. Full-Body Reconstruction from Head and
Hands

Unlike most previous works that focus on recovering
full-body pose from sparse body-worn trackers intro-
duced in Section 2.2, efforts have been made to make
use of only three tracking signals, namely the positions
and rotations of the head and hands, which most com-
mercial MR devices provide [1, 9, 3, 24, 46, 65, 67].

We categorize the recent lines of works into four
types: (1) Motion Matching: Given sparse observa-
tions, these works [1, 46] attempt to find the most
fitting motion from a predefined animation database.
Their primary goals lie not in not precise reconstruc-
tion of the full-body, but in accentuating and styliz-
ing motion. (2) Physics-Based Simulation: Recently,
QuestSim [65] and Neural3Points [67] have been pro-
posed for simulating full-body avatars by predicting
parameters of physical simulation, rendering motions
based on laws of physics. In their studies [65, 67], the
authors observed that while the synthesized motions
are physically plausible, they can exhibit stiffness and
unnaturalness. These models also encounter challenges
when attempting to replicate complex lower-body mo-
tions that have low correlation with their correspond-
ing upper-body movements. Moreover, they are sus-
ceptible to deviating from actual movements as errors
in physical simulation accumulate and falling over, in
which cases simulation needs to be restarted. Neu-
ral3Points [67] attempts to mitigate the last issues by
using a direct full-pose prediction model in conjunc-
tion, but still resorts to restarting the simulation if
too much errors accumulate, compromising the realism
and accuracy of generated motions. The remaining two
lines of work focus on directly predicting full-body pose
at every frame. (3) Sequence (Time-Series) Model for
Full-Body Pose Estimation: AvatarPoser [24] proposes
using a Transformer Encoder [61] to parse a 40-frame
sequence of sparse pose signals to predict the full-pose.
(4) Generative Latent Space-Based Full-Body Pose Es-
timation: VAE-HMD [9] and FLAG [3] rely on a de-
coder of a pose prior to predict the full-pose given a
latent code derived from sparse pose signals at the cur-



rent frame or over a short sequence of past frames. For
full-pose priors VAE-HMD uses β-VAE [18] for encoder
and decoder and FLAG uses RealNVP [8] for encoder
and decoder. To estimate latent codes from sparse sig-
nals (as substitute for full-pose encoders) VAE-HMD
optimizes a β-VAE objective with a new encoder and
FLAG employs a Transformer-based [61] predictor.

We have found (3) sequence model-based methods
to produce smoother motions than (4) generative latent
space-based methods, while the latter tend to more ac-
curately depict full-body pose at a given frame. Our
method integrates (3) and (4)’s approaches, predicting
full-body pose using a sequence model while simultane-
ously making use of a generative latent space of motion
to produce smooth and accurate full-body motions. We
also utilize an explicit motion prior as opposed to static
pose priors used by [9, 3].

2.4. Task-Generic Motion Priors

The term task-generic motion prior was first used in
HM-VAE [29], to describe “a generalized motion prior,
that learns complex human body motions from high-
fidelity motion capture data”. Unlike task-specific mo-
tion priors which are optimized for a single task, such
as motion recovery from videos [6, 28, 35], task-generic
motion priors [15, 29, 49, 55] are generative models that
can perform an array of motion-related tasks, such as
motion interpolation (in-betweening), completion, syn-
thesis, refinement, and even recovery of full-pose from
partial observations via test-time optimization. NeMF
[15] categorizes these motion priors into two categories:
time-series models and space-time models. Time-series
models predict future motions based on past observa-
tions and are typically autoregressive, with HuMoR
[49] being an example. Space-Time models, on the
other hand, directly model the spatio-temporal kine-
matic state, often by taking in a whole motion as input
at once [15, 29, 55].

We select MotionCLIP [55] for our full-body motion
prior, a space-time motion prior with an auto-encoder
[13] architecture. MotionCLIP learns to embed the in-
put motion in the latent space of CLIP [48], a large-
scale neural network trained jointly on image and text.
The CLIP space has demonstrated its effectiveness for
use in downstream tasks in various domains, such as
image [10, 12, 44, 50], 3D [40, 51, 64], and human mo-
tion [55, 57, 75]. Furthermore, MotionCLIP achieves
zero-shot action classification performance close to 2s-
AGCN [52], a dedicated action classifier, demonstrat-
ing the latent space’s ability to discriminate between
different action types [55].

3. Methods
Our framework consists of the following compo-

nents: full motion prior, sparse motion encoder, and
sequence model. The full motion prior consists of full
motion encoder and decoder (Figure 3), trained on full-
pose motions to learn the motion latent space. We train
this component first, followed by training sparse mo-
tion encoder. The goal of the sparse motion encoder is
to predict the motion latent (M) in the space learned
by our full motion prior, utilizing only sparse pose sig-
nals. Sparse motion encoder and sequence model are
used directly for full-body pose estimation, the process
visualized in Figure 2. We feed the sparse pose signals
to the sparse motion encoder after augmentation, from
which we extract the motion embedding (E), which is
a compressed representation of motion. We then con-
catenate the motion embedding with the augmented
sparse pose signals after normalization step. Finally,
the concatenated sequence is input to sequence model
for full-pose reconstruction.

3.1. Input and Output Representations

We represent the sparse pose signals at time t as xt,
defined as:

xt = [g3
t , r3

t ], (1)
where g3

t and r3
t respectively represent the global posi-

tions (3D) and the rotations in 6D form [76] of head and
hands, as would be provided by the MR device. From
this data, we derive sparse motion signals at time t de-
noted Xt, and a sparse motion sequence of length T at
time t denoted Xt−T+1:t, each defined as:

Xt = [g3
t , ġ3

t , r3
t , ṙ3

t ] ∈ R54, (2)

Xt−T+1:t = [Xt−T+1,Xt−T+2, ...,Xt] ∈ R54×T , (3)
where ġ3

t and ṙ3
t respectively represent the velocities

and angular velocities in 6D form derived from g3
t and

r3
t as done in AvatarPoser [24]. This process is rep-

resented as “Input Augmentation” in Figure 2. The
global position g3

t depends on an origin point decided
by the MR device, which can be arbitrary. We coun-
teract the randomness of input by “normalizing” the
global positions g3

t in the horizontal axes (x and z axes)
as follows:

g3
t = [gheadt , glhandt , grhandt ], (4)

ḡt.xz =
(gheadt + glhandt + grhandt

3

)
.xz, (5)

nj
t .xz = (gjt − ḡt).xz, nj

t .y = gjt .y,
∀j ∈ {head, lhand, rhand}, (6)



Figure 2. Model Overview. Sparse pose signals are fed to sparse motion encoder after augmentation to derive a motion
embedding. Motion embeddings are combined with normalized augmented signals and input the sequence model for full-pose
reconstruction. We tried different network architectures during development, and readers may refer to the supplementary
material for details and experimental results.

n3
t = [nhead

t , nlhand
t , nrhand

t ], (7)

where n3
t denote the normalized positions, normalized

positions of 3 joints having mean of 0 along x and z
axes. This process is represented as “Global Pos Nor-
malization” in Figure 2. We found empirically the in-
formation lost by using normalized global positions on
the horizontal axes to be compensated for by the other
inputs obtained via augmentation, and the normaliza-
tion step to help the sequence model produce more sta-
ble motions. We did not observe the same benefit while
training the sparse motion encoder, so we apply nor-
malization only before the sequence model.

The output consists of relative rotations (6D form)
for 22 SMPL [32] joints, which can be used to recover
the entire kinematic tree up to both wrists via forward
kinematics (FK).

3.2. Full Motion Prior Pretraining

Full motion prior denotes motion prior whose en-
coder and decoder are trained on full-pose sequences,
i.e., full motions. We use MotionCLIP [55], which is a
full-body motion auto-encoder [13] exploiting the pow-
erful latent space of CLIP [48]. As visualized in Figure
3, when the full 60-frame pose sequence is input to the
encoder (based on the Transformer Encoder architec-
ture [61]), denoted full motion encoder, the output is a
latent vector lying in CLIP space, denoted motion la-
tent (M). The decoder (based on the Transformer De-
coder architecture [61]), denoted full motion decoder,
aims to reconstruct the same full motion from the mo-
tion latent. The loss Lfm used to train the full motion
prior is formulated as follows:

Lfm = Lrecon + λtextLtext + λimageLimage, (8)

Ltext = 1− cos(CLIPtext(t),M), (9)

Figure 3. Motion Prior. After pretraining full motion
prior, sparse motion encoder is trained to predict the same
motion latent as the full motion encoder.

Limage = 1− cos(CLIPimage(s),M), (10)

where Lrecon is the reconstruction loss of the full mo-
tion, and M ∈ R512 represents the motion latent, which
is the output of the full motion encoder. Ltext and
Limage are the cosine distances from the motion latent
M to its corresponding text projection CLIPtext(t), and
the image projection CLIPimage(t), respectively. In-
stead of learning a new latent space, as a variational
auto-encoder [27] would do, CLIP space projection of
the text labels CLIPtext(t) and that of the rendered im-
ages CLIPimage(s) corresponding respectively to each
motion (both of which are part of dataset) are used
to guide the motion latents to lie close together (with



corresponding text and image projections) on the same
space. We train with the configuration named “pa-
per_model” [56]. This module is trained before all else.

3.3. Estimating Motion Latent from Sparse Motion
Sequence

We train the sparse motion encoder to estimate the
motion latent from sparse motion sequence Xt−T+1:t.
The architecture is adapted from full motion en-
coder’s Transformer Encoder [61] having the linear
layer before the Transformer Encoder modified to ac-
cept Xt−T+1:t ∈ R54×T . We use T = 60 which is the
same motion length used by the full motion prior. We
keep the full motion decoder and keep its weights frozen
when we train the auto-encoder consisting of sparse
motion encoder and full motion decoder (Figure 3) with
loss Lsm as follows:

Lsm = λ∗
textL∗

text + λ∗
imageL∗

image, (11)

L∗
text = 1− cos(CLIPtext(t),M∗), (12)

L∗
image = 1− cos(CLIPimage(s),M∗), (13)

where M∗ ∈ R512 denotes the motion latent predicted
by the sparse motion encoder. We set λ∗

text = λ∗
image =

0.01. This module is trained after the full motion prior.

3.4. Sequence Model to Reconstruct Full-Pose from
Sparse Motion Sequence and Motion Latent

Sequence model takes as input the length-S
sparse motion sequence Xt−S+1:t and the corre-
sponding sequence of motion embeddings Et−S+1:t =
[Et−S+1,Et−S+2, ...,Et] as input. A motion embedding
Et ∈ R64 is derived by passing the predicted motion
latent M∗

t ∈ R512 through a linear layer to retrieve a
compressed 64-dimensional representation of the mo-
tion. Then, Xt−S+1:t and Et−S+1:t are concatenated
along the time axis, to be input to the sequence model.
3-Layer LSTM [19] is our choice of sequence model,
which outputs a single full-body pose at time t given a
sequence of inputs of length S from time t − S + 1 to
t. We represent the full-pose as the 6D relative rota-
tion values of 22 joints of the SMPL model, from which
we can recover the absolute rotations r̂22

t and the body
root-relative positions p̂22

t of 22 joints via FK.
The loss Lseq is computed as the weighted sum of ro-

tational loss Lrot, positional loss Lpos, velocity loss Lvel

(ablation for Lvel in supplementary), and motion loss
Lmo. Lrot, Lpos, and Lvel encourage accurate full-pose
reconstruction at every frame, and are computed as the
L2 norm between the predicted and corresponding GT
values, respectively. The motion loss Lmo encourages
the model to learn the correct motion given the con-
secutive 60-frame full-pose predictions p̂22

t−60+1:t, which

are passed through a full motion encoder to obtain mo-
tion latent M̂t. We also obtain the ground truth motion
latent Mt with the corresponding ground truth motion
p22
t−60+1:t via the same full motion encoder. While we

use the pretrained full motion encoder in Section 3.2
for this purpose, a different full motion encoder could
substitute it. We then compute the cosine distance
between the two motion latents to obtain motion loss:

Lmo = 1− cos(M̂t,Mt). (14)

Finally, the total loss of the sequence model Lseq is
computed as follows:

L = λrotLrot + λposLpos + λvelLvel + λmoLmo. (15)

We set the coefficients λrot = λpos = λvel = 1.0, λmo =
0.1. Moreover, we found freezing the sparse motion en-
coder’s weights to yield better results (Section 5), and
to allow preprocessing the motion latents in advance
for faster training.

4. Experimental Results
4.1. Data Preparation and Network Training

We train and test all our models on the AMASS
[37] dataset, a large-scale human motion dataset
parametrized by the SMPL model [32]. Since AMASS
contains motion capture data with varying frame rates,
we downsample each mocap data to be close to 30
FPS. From AMASS, we extract the head (joint in-
dex 15) and two wrist joints (joints indices 20 and 21)
and derive their root-relative positions via FK, followed
by adding translation to simulate global position sig-
nals given by MR devices. We also derive the abso-
lute rotations of head and hands to simulate rotation
signals. Data are then ready to be processed by the
procedure described in Section 3.1. All of our model
components and baselines share the same input and
output format (n.b., while VAE-HMD [9] was origi-
nally tested given pelvis-relative positions as input,
we input global positions to reflect the signals from
MR devices). We use the AMASS subset consisting
of BMLrub [58], EyesJapanDataset [34], TotalCapture
[59], KIT [38], ACCAD [38], CMU [5], PosePrior [2],
TCDHands [20], EKUT for training and set aside Hu-
manEva [54], HDM05 [41], SFU [60], MoSh [31], Tran-
sitions, SSM for evaluation. For training motion pri-
ors, we additionally use BABEL [47], dataset contain-
ing per-frame action labels corresponding to a large
portion of AMASS for the text labels, and images are
rendered via MotionCLIP’s official open-source imple-
mentation [56].

The full motion prior and the sparse motion encoder
each takes 10 hours, and the sequence model 5 hours



Per-Joint Errors Motion-Related Statistics

Method MPJPE Legs MPJPE Global
MPJPE MPJVE Motion

Distance ↓ FID ↓

Ours 7.25 9.34 7.38 25.42 5.12 · 10−3 6.03 · 10−2

AvatarPoser [24] 7.71 10.25 7.79 29.71 5.38 · 10−3 7.59 · 10−2

AvatarPoser-60 7.74 10.39 7.82 29.85 5.47 · 10−3 7.87 · 10−2

VAE-HMD [9] 7.48 9.34 7.78 54.84 8.13 · 10−3 9.24 · 10−2

VAE-HMD-60 8.46 10.69 8.91 60.31 8.09 · 10−3 9.40 · 10−2

Table 1. Main Quantitative Results.

after preprocessing the motion latents via the trained
sparse motion encoder (possible because sparse motion
encoder is kept frozen during sequence model training)
which takes about an hour, for a total 26 hours for full
training on a single NVIDIA RTX 2080 Ti. For the
baseline models, we followed the setup described in the
original papers [9, 24] as closely as possible. For Avatar-
Poser, we use the official open-source implementation
[25]. For VAE-HMD [9], which has no open-source im-
plementation available, we implemented their best per-
forming model according to the original paper which
contains a pretrained pose prior component. Note that
we selected a much wider subset of AMASS for train-
ing and testing than the original works [9, 24]. Refer
to the supplementary material for more details about
training and baseline implementations.

4.2. Quantitative Evaluation

We quantitatively evaluate our model using a di-
verse set of metrics against two baselines: Avatar-
Poser [24] and VAE-HMD [9]. The quantitative re-
sults are presented in Table 1. Originally, AvatarPoser
and VAE-HMD had window sizes of 40 frames and 16
frames, respectively. To ensure fairness, we addition-
ally compare against AvatarPoser and VAE-HMD each
adapted to have a 60-frame window size, which is the
same as the window size that our motion prior sees.
The adapted versions are labeled AvatarPoser-60 and
VAE-HMD-60 in Table 1 (further results and analyses
in supplementary).

Per-Joint Errors. We use four per-joint error met-
rics to evaluate our approach: MPJPE (mean per-joint
position error [cm]), Legs MPJPE [cm], Global MPJPE
[cm], and MPJVE (mean per-joint velocity error [cm/
s]). Global MPJPE is computed by first mapping the
predicted joints to global space, which involves com-
bining GT head position (given by MR device) with
the predicted joint rotations of the full body. The re-
sults in Table 1 demonstrate that our approach out-
performs baselines on the majority of the metrics eval-
uated, rivalled only by VAE-HMD on Legs MPJPE.
Since the sparse pose signals only contain direct infor-

mation about the upper body, accurate reconstruction
of legs is challenging especially when leg motions have
low correlation with co-ocurring upper body motion.
Use of a motion prior generally results in lower error
in leg motions, which can also be seen in Section 5 and
in Figure 5 qualitatively. VAE-HMD contains a de-
coder component of a pretrained auto-encoder whose
weights are frozen, and during pretraining, it receives
full-body motions as input and learns a prior, which
helps reconstruct some difficult motions, as evidenced
by the legs MPJPE metric being as low as ours. How-
ever, VAE-HMD suffers from relatively high velocity
error (MPJVE) compared to other methods.

Motion-Related Errors. Motion distance mea-
sures the difference between the overall motion (span-
ning 60 frames), between the GT motion and predicted
motion calculated the same way as Equation 14. For
this evaluation we use a different motion prior from one
we optimized with, namely “classes_model” of Motion-
CLIP [55]). Although classes_model’s motion latents
also lie in CLIP space [48], different training parame-
ters and dataset are used to train, resulting in differ-
ent motion latents being predicted (Also, the text and
images’ CLIP projections do not align [55], so different
motion latent spaces are learned depending on training
configuration). FID (Fretchet Inception Distance [17])
measures the similarity between the distributions of
ground truth motions and generated motions, the lower
the more similar. While FID has been used widely in
the context of generated human motions [14, 45, 30, 15],
our work is the first to use it for full-body motions re-
constructed from sparse signals. Our model achieves
the lowest FID, followed by AvatarPoser variants, and
VAE-HMD-60 with the highest FID. These results are
consistent with the findings from our user studies (Sec-
tion 4.3) where we evaluate the quality of generated
motions.

4.3. User Study

We define two sets of motion segments for the user
studies: Random Set, consisting of 60 3-second seg-
ments randomly sampled from the entire test dataset,



General Preference
Random Set Hard Set

Other Model Ours Other Ours Other
AvatarPoser 58.8% 41.2% 65.0% 35.0%
VAE-HMD 94.9% 5.10% 95.8% 4.20%

Table 2. Result of User Study I: General Preference.
(Better reconstruction of ground truth motion.)

Motion Matching
Random Set Hard Set

Other
Model Ours Other Neut Ours Other Neut

AvatarPoser 43.9% 32.8% 23.3% 52.6% 28.8% 18.6%
VAE-HMD 76.9% 10.3% 12.8% 79.8% 12.7% 7.50%

Table 3. Result of User Study I: Motion Match-
ing. (Which generated motion matches ground truth mo-
tion better?)

Figure 4. Result of User Study II: Naturalness of
Motions. Scores range from 1 (worst) to 7 (best).

and Hard Set, which includes 60 3-second segments.
For Hard Set, we sampled 30 motion segments on which
one of our baselines (neither AvatarPoser nor VAE-
HMD, but the “No Motion Prior” model explained in
Section 5), trained without motion prior, had the high-
est MPJPE and Legs MPJPE each. We conducted user
studies I and II, where for each user study, we (dis-
jointly) sampled 30 segments, from Random Set and
Hard Set respectively. We conducted the user studies
on 30 participants. Full-body animations of ground
truth motions, predictions from our model, Avatar-
Poser [24], and VAE-HMD [9] for each segment were
rendered using SMPL Blender addon [33].

User Study I. To compare our model with one
of the baselines side-by-side, we placed ground truth
animation on top and juxtaposed our model’s predic-
tion and one of AvatarPoser and VAE-HMD’s anima-
tions at the bottom (latter’s order randomized) for the
same underlying motion. We informed participants

that the two animations at the bottom are different
reconstructions of the top animation from partial in-
formation, and we asked to choose (1) a better recon-
struction among the two (preference), and (2) one whose
motion matched the ground truth motion better, with
“neutral” option added for the latter.

The results for (1) can be found in Table 2. The ta-
ble shows participants’ preference towards our model’s
predictions for both sets, with more pronounced re-
sults with Hard Set. This demonstrates our model’s
ability to better reconstruct motions that the baseline,
which does not make use of a motion prior, strug-
gles with. Moreover, participants clearly preferred
our model’s predictions over VAE-HMD’s, noting that
VAE-HMD’s animations looked unnatural primarily
due to jitter. This is consistent with the high velocity
error (MPJVE) measured in Section 4.2. The results
of (2) can be found in Table 3, where we evaluated the
motion matching capability of our model in addition
to the quantitative motion distance metric in Section
4.2. The results show similar trends as (1).

User Study II. We played all four animations with
the same underlying motion simultaneously, ordered
randomly, asking participants to rate the naturalness
of each motion on a scale of 1 to 7, 7 being the highest
(participants were allowed to replay animations as they
desired). From the mean scores plotted in Figure 4, we
can observe that users found GT motions the most nat-
ural, followed by generations from our model’s predic-
tions, then AvatarPoser and VAE-HMD, in that order.
While the scores for predicted motions for Hard Set fall
behind those for Random Set, participants found the
motions generated via our model more natural than
other models’ generations for both sets.

5. Ablation Studies
We conduct ablation studies by removing or mod-

ifying different subcomponents, the main quantitative
results shown in Table 4.

We first assess the role of the motion prior com-
ponent in our architecture by completely removing it
from our model, leaving only the input processing and
sequence model components (see Figure 2 for refer-
ence). The results in “No Motion Prior” row in Table
4 show degradation in values for all quantitative met-
rics. (This model was used to curate the Hard Set for
the user study, as explained in Section 4.3.) Addition-
ally, we group all motion segments in the test dataset
by action types defined in BABEL [47], and sort them
by improvement of Legs MPJPE and MPJPE respec-
tively. We present the top 5 and bottom 5 action types
in Table 5, left column showing top 5 and right column
showing bottom 5. Top 5 improved action types for



Figure 5. Qualitative Results. We show qualitative results on difficult motions with less common lower body movements.
Left Column: Kicking Motion (Transitions/mazen_c3d/kick_push_poses [37]). Right Column: Moonwalking (Transitions/
mazen_c3d/run_stand_poses [37]).

Per-Joint Errors Motion-Related Statistics

Method MPJPE Legs
MPJPE

Global
MPJPE MPJVE Motion

Distance ↓ FID ↓

Ours 7.25 9.34 7.38 25.42 5.12 · 10−3 6.03 · 10−2

No Motion Prior 7.37 9.67 7.62 26.22 5.52 · 10−3 7.54 · 10−2

No Motion Distance Loss 7.32 9.43 7.45 25.71 5.31 · 10−3 7.08 · 10−2

With Finetuned Motion Prior 7.39 9.77 7.67 26.10 5.28 · 10−3 6.24 · 10−2

With a Different Motion Prior 7.29 9.27 7.41 26.15 5.15 · 10−3 6.20 · 10−2

Table 4. Ablation Studies: Main Quantitative Results

Improved Action Type Degraded Action Type
Legs MPJPE Improvement/Degradation

knee movement place something
cartwheel grasp object
crouch poses
squat stretch
bend face direction

MPJPE Improvement/Degradation
cartwheel face direction
shuffle place something
knee movement lean
throw take/pick something up
touch ground shout

Table 5. Ablation Studies: Action Types [47] Im-
proved by Using Motion Prior. Actions containing
high amount of leg motions are in bold. Our model’s top
improvements lie in actions containing much leg motions.

both metrics consist of actions involving a high amount
of leg motions 1, showing that the motion prior con-
tributes to better reconstruction of leg motions given
only upper body signals. We can also observe degra-

1A list of BABEL [47] action subtypes corresponding to each
action type can be found in [36].

dation from not using the motion distance loss (“No
Motion Distance Loss”) and from unfreezing the mo-
tion prior (“With Finetuned Motion Prior” ).

We experimented with various task-generic motion
priors during development and settled on MotionCLIP
as it gave the best overall performance. The final row of
Table 4 shows the result of using a Transformer VAE-
based [61, 27] motion prior whose architecture is based
on ACTOR [45], from which we removed action con-
ditioning part to have an unconditional motion VAE
[27].

6. Conclusions and Limitations
We present a method of utilizing motion prior to

effectively reconstruct full-body motion from impover-
ished signals of pose. Our method recovers intended
full-body motions that look natural, with improved
lower body over baselines. However, our work only con-
siders a single body type, and we wish to allow people
of diverse body shapes to utillize our system effectively
in a future work. Moreover, we sometimes observe foot-
sliding artifacts from generated motions, and we wish
to measure their severity and eliminate them.
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