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Appendices
A. Model and Training Details
A.1. Input Derivation Details

From sparse pose signals denoted xt we derive sparse
motion signals denoted Xt as follows:

xt = [g3
t , r

3
t ], (1)

Xt = [g3
t , ġ

3
t , r

3
t , ṙ

3
t ] ∈ R54, (2)

where g3
t and r3t respectively denote the 3D global po-

sitions and the global rotations in 6D form [18] of head

and hands, ġ3
t denoting linear velocity calculated as

finite difference of g3
t :

ġ3
t = g3

t − g3
t−1, (3)

and ṙ3t denoting angular velocity calculated as:

Ṙj
t = Rj

t−1R
j
t , ∀j ∈ {head, lhand, rhand}, (4)

where Rj
t−1, Rj

t , and Ṙj
t denote global rotation matri-

ces at time t and t − 1, and angular velocity rotation
matrix at time t each joint respectively. 6D angular
velocity ṙjt of each joint is derived by extracting the
first two columns of Ṙj

t [18].

A.2. Neural Network Architecture and Training

To train the full motion prior, we use the “pa-
per_model” training configuration of MotionCLIP’s
[15] official implementation [16], namely with λtext =
λimage = 0.01. AdamW [12] with learning rate of
0.0001 with batch size of 20 for 100 epochs is used for
optimization. For the sparse motion prior, the configu-
ration remains the same except we use a frozen decoder
from the full motion prior as described in the main pa-
per.

The sequence model consists of a linear layer map-
ping motion latent M∗ ∈ R512 predicted by the sparse
motion encoder to a 64-dimensional vector E (motion
embedding), which is concatenated with sparse motion
signal Xt ∈ R54 along the time axis, to be input to the
3-Layer LSTM [5] with hidden layer size of 128. Fi-
nally, the final hidden layer output of the LSTM passes
through a linear layer to obtain 6D relative rotations
of 22 SMPL joints [11]. We use the Adam optimizer
[8] with initial learning rate of 0.002 decaying by half
every 15 epochs and train for 200 epochs with batch
size of 32.

A.3. Evaluation Configuration

The quantitative results in the main paper are com-
puted over the entire test dataset with a sliding window
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Per-Joint Errors Motion-Related Statistics

Method MPJPE Legs MPJPE Global
MPJPE MPJVE Motion

Distance ↓ FID ↓

Sequence Pretrained 7.43 9.28 7.75 53.9 8.08 · 10−3 9.24 · 10−2

Static Pretrained 7.68 9.62 7.67 56.2 12.3 · 10−3 12.5 · 10−2

Table 1. VAE-HMD Variations.

Per-Joint Errors Motion-Related Statistics

Method MPJPE Legs
MPJPE

Global
MPJPE MPJVE Motion

Distance ↓ FID ↓

Ours (Main Paper Method) 7.17 9.22 7.33 25.5 5.06 · 10−3 6.03 · 10−2

No Velocity Loss 7.29 9.39 7.42 27.4 5.16 · 10−3 6.55 · 10−2

No GPos Normalization 7.49 9.43 7.86 26.2 5.38 · 10−3 8.20 · 10−2

Divide by STD 8.37 10.2 9.02 30.0 6.02 · 10−3 11.7 · 10−2

Normalize Vertically 10.0 13.1 10.2 29.6 7.15 · 10−3 10.9 · 10−2

ME After LSTM 7.62 9.91 7.81 26.3 5.75 · 10−3 7.45 · 10−2

With Cross-Attention 7.17 9.28 7.34 26.4 4.85 · 10−3 6.57 · 10−2

AvatarPoser 7.68 10.2 7.76 29.8 5.36 · 10−3 7.67 · 10−2

VAE-HMD 7.43 9.28 7.75 55.0 8.08 · 10−3 9.24 · 10−2

Table 2. Extra Ablation Studies.

moving by 1 frame. The extra results presented here
are computed with a sliding window moving by the size
of itself, so while still spanning the entire test dataset,
exact figures may differ.

B. Baseline Models Details and Extra Results
B.1. 60-Frame Models

VAE-HMD [1] originally accepts sparse pose signals
that contain 16-frame information, and AvatarPoser [6]
40. We require 60-frame input to compute the motion
embedding, and to ensure fairness, we trained two extra
baseline models that accept 60-frame input by adapting
[1, 6].

For VAE-HMD, we adapt their “sequence pre-
trained” model with the most parameters (with 6 resid-
ual blocks) to first train the VAE [9] to have the en-
coder that accepts 60-frame full-body poses, and the
decoder that outputs a single full-body pose. Then we
train a new encoder that accepts 60-frame sparse mo-
tion signals with a frozen decoder trained in previous
step. For AvatarPoser, we simply extend the window
size to 60, such that the Transformer Encoder [17] ac-
cepts input of length 60 instead of 40, via their official
implementation [7]. The quantitative metrics worsened
after extending the window size as observed in the main
paper, and we suspect the cause to be that the original
models’ hyperparameters including window sizes were
optimized to yield the best performance during their
development, just as ours were optimized for perfor-
mance while developing our own model.

B.2. VAE-HMD Variations

VAE-HMD [1] presents two types of models in
the original paper, namely, the “sequence pretrained”
model takes 16-frame information in the encoder (this
variant is compared against ours in the main paper),
and the “static pretrained” model only takes a single
frame information in the encoder. The quantitative
results are presented in Table 1. It can be seen that
the static model generally performs worse than the se-
quence model, reconstruction abilties of the lower body
and overall motion compromised, which can also be
seen in Figure 1

C. Extra Ablation Studies
We perform extra ablation studies by removing the

velocity loss term, with different global position nor-
malization methods, and with architectural variations.
Results are presented in Table 2.

C.1. Train without Velocity Loss Term

We present results obtained from training our model
without the velocity loss term, for our baselines [1, 6]
were not optimzed to explicitly minimize velocity er-
ror. As can be seen on “No Velocity Loss” row of Table
2, MPJVE slightly increases but there is no significant
difference overall. We observed from the generated mo-
tions on the other hand, that model trained with ve-
locity loss term produced smoother motions that were
overall less stiff.



Figure 1. Qualitative Results. VAE-HMD sequence (motion) model vs. static model.

C.2. Global Position Normalization

We experimentally find normalizing global positions
to improve training as explained in the main paper.
“No GPos Normalization” (Table 2) shows results when
no such normalization is applied. We only apply nor-
malization horizontally for our main method, and we
observe significant performance drop when normaliza-
tion is also applied vertically (“Normalize Vertically”).
We apply the global position normalization by sub-
tracting the mean positions of three IMUs, and we ex-
periment by also dividing by the STD, whose results
are shown in row “Divide by STD”.

C.3. Append Motion Embedding After RNN

In our main method, we concatenate the motion
embedding Et and the sparse motion input Xt before
they are input to the LSTM (the sequence model). We
vary the architecture by only inputting Xt−S+1:t to the
LSTM and concatenating the output with Et−S+1:t,
followed by a shallow MLP to recover the full-body
pose. The results can be seen on the “ME After LSTM”
row on Table 2.

C.4. Motion Conditioning via Cross-Attention

In an attempt to improve upon Section C.3’s method
to better condition the output of the LSTM on the
overall motion information, we compute the cross-
attention [17] between the motion embedding (as
Query [17]) and the LSTM output (as Key and Value
[17]), followed by a shallow MLP to compute the full-
body pose. As can be seen on “With Cross-Attention”
row of Table 2, only motion distance slightly improved
over the main method, and we also preferred the out-
put motions by the main method in the qualitative
evaluation.

FID ↓ FID 2 ↓
Ours 6.03 · 10−2 0.131

AvatarPoser [6] 7.59 · 10−2 0.137
AvatarPoser-60 7.87 · 10−2 0.160
VAE-HMD [1] 9.24 · 10−2 0.167
VAE-HMD-60 9.40 · 10−2 0.174

Table 3. Different FID metrics.

D. On Evaluation Methods

D.1. User Study

We show screenshots from videos containing short
motion segments used for user study I (Figure 2) and
user study II (Figure 3).

D.2. FID

FID (Fretchet Inception Distance [4]) measures sim-
ilarty between two distributions, in our experiments
between ground truth motions and motions generated
from predictions from our model or one of the base-
lines. While methods that are meant to generate ar-
bitrary motions make use of this metric [2, 13, 10, 3],
our distribution of generated motions derives from esti-
mations of ground truth motions, resulting in very low
FID compared to other works. To mitigate this effect,
we devise a second FID metric, where we randomly
split the underlying motions into two, and use one set
of underlying motions for ground truth motion distri-
bution and the other for predicted motion distribution.
Because the splitting is random, there can be a large
variation depending on the split, which is why apply
the splitting process 50 times and compute the average
value. While the result of the second FID metric is not
used in the main paper, we present the results in Table
3.



E. BABEL Action Types
We present qualitative results of our model and

baselines performing actions categorized by BABEL
[14] on the test dataset (Figures 4, 5, 6, 7, 8, 9, 10).



Figure 2. User Study I Example Video. Participants were told that the bottom two animations are reconstructions of the
top animation from partial information.

Figure 3. User Study II Example Video. Participants were asked to score each animation for naturalness on the scale of 1
to 7.



Figure 4. Qualitative Results. BABEL action label: “knee movement”

Figure 5. Qualitative Results. BABEL action label: “crouch”

Figure 6. Qualitative Results. BABEL action label: “squat”



Figure 7. Qualitative Results. BABEL action label: “bend”

Figure 8. Qualitative Results. BABEL action label: “throw”

Figure 9. Qualitative Results. BABEL action label: “touch ground”



Figure 10. Qualitative Results. BABEL action label: “place something”



References
[1] Andrea Dittadi, Sebastian Dziadzio, Darren Cosker,

Ben Lundell, Thomas J Cashman, and Jamie Shotton.
Full-body motion from a single head-mounted device:
generating smpl poses from partial observations. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 11687–11697, 2021.

[2] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou,
Qingyao Sun, Annan Deng, Minglun Gong, and Li
Cheng. Action2motion: Conditioned generation of
3d human motions. In Proceedings of the 28th ACM
International Conference on Multimedia, pages 2021–
2029, 2020.

[3] Chengan He, Jun Saito, James Zachary, Holly Rush-
meier, and Yi Zhou. Nemf: Neural motion fields for
kinematic animation. In NeurIPS, 2022.

[4] Martin Heusel, Hubert Ramsauer, Thomas Un-
terthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge
to a local nash equilibrium. Advances in neural infor-
mation processing systems, 30, 2017.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[6] Jiaxi Jiang, Paul Streli, Huajian Qiu, Andreas Fender,
Larissa Laich, Patrick Snape, and Christian Holz.
Avatarposer: Articulated full-body pose tracking from
sparse motion sensing. In Proceedings of European
Conference on Computer Vision. Springer, 2022.

[7] Jiaxi Jiang, Paul Streli, Huajian Qiu, Andreas Fender,
Larissa Laich, Patrick Snape, and Christian Holz.
Avatarposer: Articulated full-body pose tracking
from sparse motion sensing. https://github.com/
eth-siplab/AvatarPoser, 2022. [Online; accessed 1-
March-2023].

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[9] Diederik P Kingma and Max Welling. Auto-encoding
variational bayes, 2013.

[10] Hung Yu Ling, Fabio Zinno, George Cheng, and
Michiel Van De Panne. Character controllers using
motion vaes. ACM Trans. Graph., 39(4), aug 2020.

[11] Matthew Loper, Naureen Mahmood, Javier Romero,
Gerard Pons-Moll, and Michael J. Black. SMPL:
A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–
248:16, Oct. 2015.

[12] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization, 2017.

[13] Mathis Petrovich, Michael J. Black, and Gül Varol.
Action-conditioned 3D human motion synthesis with
transformer VAE. In International Conference on
Computer Vision (ICCV), 2021.

[14] Abhinanda R. Punnakkal, Arjun Chandrasekaran,
Nikos Athanasiou, Alejandra Quiros-Ramirez, and
Michael J. Black. BABEL: Bodies, action and be-
havior with english labels. In Proceedings IEEE/CVF
Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 722–731, June 2021.

[15] Guy Tevet, Brian Gordon, Amir Hertz, Amit H
Bermano, and Daniel Cohen-Or. Motionclip: Exposing
human motion generation to clip space. In Computer
Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXII, pages 358–374. Springer, 2022.

[16] Guy Tevet, Brian Gordon, Amir Hertz, Amit H
Bermano, and Daniel Cohen-Or. Motionclip: Expos-
ing human motion generation to clip space. https:
//github.com/GuyTevet/MotionCLIP, 2022. [Online;
accessed 1-March-2023].

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[18] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang,
and Hao Li. On the continuity of rotation repre-
sentations in neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2019.

https://github.com/eth-siplab/AvatarPoser
https://github.com/eth-siplab/AvatarPoser
https://github.com/GuyTevet/MotionCLIP
https://github.com/GuyTevet/MotionCLIP

